×

×

# If a and b are integers, not both of which are zero, prove that gcd(2a - 3b, 4a -

ISBN: 9780073383149 413

## Solution for problem 15 Chapter 2

Elementary Number Theory | 7th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

Elementary Number Theory | 7th Edition

4 5 1 406 Reviews
26
1
Problem 15

If a and b are integers, not both of which are zero, prove that gcd(2a - 3b, 4a - 5b)divides b; hence, gcd(2a + 3, 4a + 5) = 1.

Step-by-Step Solution:
Step 1 of 3

M303 Section 2.2 Notes- Matrix Inversion 10-10-16  Unlike real (nonzero) numbers, not every matrix has multiplicative inverse  × matrix invertible/nonsingular if there exists another × matrix suh that = = o Non-invertible matrix called singular o unique and defined as inverse of , denoted o To check that = , only have to check one equality above o Invertible matrices tell us about invertibility of linear maps (whether is 1-1 and/or onto)  Ex. For =[2 5 ]and = [−7 −5 ], show that = . −3 −7 3 2 o = [ 2 5 ][−7 −5 ] −3 −

Step 2 of 3

Step 3 of 3

##### ISBN: 9780073383149

This textbook survival guide was created for the textbook: Elementary Number Theory, edition: 7. The answer to “If a and b are integers, not both of which are zero, prove that gcd(2a - 3b, 4a - 5b)divides b; hence, gcd(2a + 3, 4a + 5) = 1.” is broken down into a number of easy to follow steps, and 30 words. The full step-by-step solution to problem: 15 from chapter: 2 was answered by , our top Math solution expert on 03/14/18, 05:19PM. This full solution covers the following key subjects: . This expansive textbook survival guide covers 16 chapters, and 355 solutions. Elementary Number Theory was written by and is associated to the ISBN: 9780073383149. Since the solution to 15 from 2 chapter was answered, more than 1023 students have viewed the full step-by-step answer.

#### Related chapters

Unlock Textbook Solution