Prove that det(eA) = etrA. (Hint: First assume A is diagonalizable. In the general case, apply the result of Exercise 6.2.15, which also works with complex matrices.)

Trigonometry Section 2.4 and 2.5 Cos(a-b) = cosacosb + sinasinb Cos(a+b) = cosacosb – sinasinb Sin(a-b) = sinacosb - cosasinb Sin(a+b) = sinacosb + cosasinb tana−tanb Tan(a-b) =1+tanatanb tana+tanb Tan(a+b) = 1−tanatanb Here is an example problem: 7π 7π...