Determine the least squares lines for the data points in Exercises 9-14. (Hint: Note that the same pseudoinverse is involved for each set of data.) (1, 0), (2, 4), (3, 7)

EX*. -T,,-es/^--ct // Hnr777 B*J*, Sa.ss*r- to/1il6 Ch*tn'i\"le- l=ldq ncY) y={ecD) #=Mm *({crr)-{'crr>).J'cx) \J 2x U=g- b -L, k&,+D' _.1 dx g,n'ltu7 Arr,la t7rL+),Lx 3n'(zxj -zr)'+ s(sx-zxfG -w) /=C*Y # = ^L- 50y, 1 dx U) => /= WDe*inrff)+ dy dx : *Q,'rix*)-+, G x'rD G*'+s) ffi% Y=l X,tm"e poJ"ar[\,^b 'B' ).q'= I a'izrts)lz i)B'.1CuxtDl ,cr) _dL=x + dx( r+9-'h xtOb Yil) /r(un)!',Dlr X t(zxtD -\ &= 3x t3 Czxr9L -/ dx (zxts)1, /:- (xrtr,5 A= ru '@3 ) -, tx-.; X-r n'= (x*) t- (