If A is any symmetric 2x2 matrix with eigenvalues 2 and 3, and u is a unit vector in R2, what are the possible values of || Au || ? Explain your answer geometrically, using Example 4 as a guide.

Math 103—Week 7 Notes—3.93.11 3.9: Inverse Trig Functions: Graphs of Inverse Trig Functions: *Inverse and regular trig functions have opposite inputs/outputs **Graphs of inverse trig functions are (one cycle of) trig function graphs rotated clockwise 90 Derivative Rules: If x falls within each inverse trig function’s domain… 1 du √(¿−u 2) dx d −1 1 dx(sin u = ¿ 1 2 du √(¿−u ) dx d −1 (cos u )= dx ¿ d −1 1 du (tan u )= 2 dx 1+u dx d −1 −1 du dx(csc u )= u √(u −1) dx | | d −1 1 du dx sec u = 2 dx | |√(u −1) d −1 −1 du dx cot u