 6.4.1: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.2: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.3: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.4: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.5: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.6: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.7: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.8: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.9: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.10: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.11: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.12: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.13: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.14: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.15: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.16: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.17: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.18: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.19: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.20: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.21: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.22: In Exercises 122, state in which quadrant or on which axes the angl...
 6.4.23: In Exercises 2336, sketch each of the following angles with given m...
 6.4.24: In Exercises 2336, sketch each of the following angles with given m...
 6.4.25: In Exercises 2336, sketch each of the following angles with given m...
 6.4.26: In Exercises 2336, sketch each of the following angles with given m...
 6.4.27: In Exercises 2336, sketch each of the following angles with given m...
 6.4.28: In Exercises 2336, sketch each of the following angles with given m...
 6.4.29: In Exercises 2336, sketch each of the following angles with given m...
 6.4.30: In Exercises 2336, sketch each of the following angles with given m...
 6.4.31: In Exercises 2336, sketch each of the following angles with given m...
 6.4.32: In Exercises 2336, sketch each of the following angles with given m...
 6.4.33: In Exercises 2336, sketch each of the following angles with given m...
 6.4.34: In Exercises 2336, sketch each of the following angles with given m...
 6.4.35: In Exercises 2336, sketch each of the following angles with given m...
 6.4.36: In Exercises 2336, sketch each of the following angles with given m...
 6.4.37: In Exercises 3742, match the angles (af) with the coterminal angles...
 6.4.38: In Exercises 3742, match the angles (af) with the coterminal angles...
 6.4.39: In Exercises 3742, match the angles (af) with the coterminal angles...
 6.4.40: In Exercises 3742, match the angles (af) with the coterminal angles...
 6.4.41: In Exercises 3742, match the angles (af) with the coterminal angles...
 6.4.42: In Exercises 3742, match the angles (af) with the coterminal angles...
 6.4.43: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.44: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.45: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.46: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.47: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.48: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.49: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.50: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.51: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.52: In Exercises 4352, determine the angle of the smallest possible pos...
 6.4.53: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.54: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.55: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.56: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.57: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.58: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.59: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.60: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.61: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.62: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.63: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.64: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.65: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.66: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.67: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.68: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.69: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.70: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.71: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.72: In Exercises 5372, the terminal side of an angle in standard positi...
 6.4.73: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.74: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.75: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.76: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.77: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.78: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.79: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.80: In Exercises 7380, calculate the values for the six trigonometric f...
 6.4.81: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.82: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.83: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.84: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.85: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.86: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.87: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.88: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.89: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.90: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.91: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.92: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.93: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.94: In Exercises 8194, calculate (if possible) the values for the six t...
 6.4.95: What is the measure of the angle swept out by the second hand if it...
 6.4.96: What is the measure of the angle swept out by the hour hand if it s...
 6.4.97: Suppose the scoring device for the player assigned the clockwise di...
 6.4.98: If during a game of ZimZam the ball traveled 990 counterclockwise ...
 6.4.99: Don and Ron both started running around a circular track, starting ...
 6.4.100: Dan and Stan both started running around a circular track, starting...
 6.4.101: Given that the initial position of the dial is at zero (shown in th...
 6.4.102: Given that the initial position of the dial is at zero (shown in th...
 6.4.103: A right triangle is drawn in QI with one leg on the xaxis and its ...
 6.4.104: A right triangle is drawn in QI with one leg on the xaxis and its ...
 6.4.105: Let be the angle of elevation from a point on the ground to the top...
 6.4.106: Let be the angle of elevation from a point on the ground to the top...
 6.4.107: An analysis of a months revenue and costs indicates . Determine whe...
 6.4.108: An analysis of a months revenue and costs indicates . Determine whe...
 6.4.109: If , find the distance between the distal ends of the two metatarsa...
 6.4.110: If , find the distance between the distal ends of the two metatarsa...
 6.4.111: The terminal side of an angle in standard position passes through t...
 6.4.112: The terminal side of an angle in standard position passes through t...
 6.4.113: In Exercises 113120, determine whether each statement is true or false
 6.4.114: In Exercises 113120, determine whether each statement is true or false
 6.4.115: In Exercises 113120, determine whether each statement is true or false
 6.4.116: In Exercises 113120, determine whether each statement is true or false
 6.4.117: In Exercises 113120, determine whether each statement is true or false
 6.4.118: In Exercises 113120, determine whether each statement is true or false
 6.4.119: In Exercises 113120, determine whether each statement is true or false
 6.4.120: In Exercises 113120, determine whether each statement is true or false
 6.4.121: If the terminal side of angle passes through the point
 6.4.122: If the terminal side of angle passes through the point
 6.4.123: If the line makes an angle with the xaxis, which trigonometric fun...
 6.4.124: If the line makes an angle with the xaxis, which trigonometric fun...
 6.4.125: Find y if (3, y) is on the terminal side of angle and
 6.4.126: Find the equation of the line with positive slope that passes throu...
 6.4.127: Find the equation of the line with positive slope that passes throu...
 6.4.128: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.129: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.130: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.131: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.132: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.133: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.134: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.135: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.136: In Exercises 128137, use a calculator to evaluate the following exp...
 6.4.137: In Exercises 128137, use a calculator to evaluate the following exp...
Solutions for Chapter 6.4: Definition 2 of Trigonometric Functions: Cartesian Plane
Full solutions for Algebra and Trigonometry,  3rd Edition
ISBN: 9780840068132
Solutions for Chapter 6.4: Definition 2 of Trigonometric Functions: Cartesian Plane
Get Full SolutionsAlgebra and Trigonometry, was written by and is associated to the ISBN: 9780840068132. This textbook survival guide was created for the textbook: Algebra and Trigonometry,, edition: 3. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 6.4: Definition 2 of Trigonometric Functions: Cartesian Plane includes 137 full stepbystep solutions. Since 137 problems in chapter 6.4: Definition 2 of Trigonometric Functions: Cartesian Plane have been answered, more than 44767 students have viewed full stepbystep solutions from this chapter.

Cofunction identity
An identity that relates the sine, secant, or tangent to the cosine, cosecant, or cotangent, respectively

Derivative of ƒ
The function defined by ƒ'(x) = limh:0ƒ(x + h)  ƒ(x)h for all of x where the limit exists

Direction angle of a vector
The angle that the vector makes with the positive xaxis

Frequency table (in statistics)
A table showing frequencies.

Geometric sequence
A sequence {an}in which an = an1.r for every positive integer n ? 2. The nonzero number r is called the common ratio.

Index
See Radical.

Infinite sequence
A function whose domain is the set of all natural numbers.

Initial side of an angle
See Angle.

Lower bound of f
Any number b for which b < ƒ(x) for all x in the domain of ƒ

Natural exponential function
The function ƒ1x2 = ex.

Normal curve
The graph of ƒ(x) = ex2/2

Opens upward or downward
A parabola y = ax 2 + bx + c opens upward if a > 0 and opens downward if a < 0.

Ordinary annuity
An annuity in which deposits are made at the same time interest is posted.

Orthogonal vectors
Two vectors u and v with u x v = 0.

Parameter
See Parametric equations.

Polar distance formula
The distance between the points with polar coordinates (r1, ?1 ) and (r2, ?2 ) = 2r 12 + r 22  2r1r2 cos 1?1  ?22

Principal nth root
If bn = a, then b is an nth root of a. If bn = a and a and b have the same sign, b is the principal nth root of a (see Radical), p. 508.

Quadratic equation in x
An equation that can be written in the form ax 2 + bx + c = 01a ? 02

Quantitative variable
A variable (in statistics) that takes on numerical values for a characteristic being measured.

Righthand limit of ƒ at x a
The limit of ƒ as x approaches a from the right.