 104.1: For 16, use the definition of dot product to find , where is the an...
 104.2: For 16, use the definition of dot product to find , where is the an...
 104.3: For 16, use the definition of dot product to find , where is the an...
 104.4: For 16, use the definition of dot product to find , where is the an...
 104.5: For 16, use the definition of dot product to find , where is the an...
 104.6: For 16, use the definition of dot product to find , where is the an...
 104.7: For 712, use the definition of dot product to find the angle betwee...
 104.8: For 712, use the definition of dot product to find the angle betwee...
 104.9: For 712, use the definition of dot product to find the angle betwee...
 104.10: For 712, use the definition of dot product to find the angle betwee...
 104.11: For 712, use the definition of dot product to find the angle betwee...
 104.12: For 712, use the definition of dot product to find the angle betwee...
 104.13: For 1318, find and the angle between and when they are tailtotail.
 104.14: For 1318, find and the angle between and when they are tailtotail.
 104.15: For 1318, find and the angle between and when they are tailtotail.
 104.16: For 1318, find and the angle between and when they are tailtotail.
 104.17: For 1318, find and the angle between and when they are tailtotail.
 104.18: For 1318, find and the angle between and when they are tailtotail.
 104.19: Sailboat Force Problem: Two ropes from the sail of a sailboat are b...
 104.20: Hip Roof Problem: A house is to be built with a hip roof. The trian...
 104.21: In Figure 104h, vector , 10 units long, makes an angle of 28 with ...
 104.22: In Figure 104i, vector , 100 units long, makes an angle of 145 wit...
 104.23: Shortcuts for Projections Problem: Show that these formulas give th...
 104.24: Vocabulary Problem: Give three names commonly used for .
 104.25: For 2528, find a. The scalar projection of on b. The vector project...
 104.26: For 2528, find a. The scalar projection of on b. The vector project...
 104.27: For 2528, find a. The scalar projection of on b. The vector project...
 104.28: For 2528, find a. The scalar projection of on b. The vector project...
 104.29: Cube Problem: Figure 104j shows a cube with one corner at the orig...
 104.30: Journal Problem: Update your journal with what you have learned sin...
Solutions for Chapter 104: Scalar Products and Projections of Vectors
Full solutions for Precalculus with Trigonometry: Concepts and Applications  1st Edition
ISBN: 9781559533911
Solutions for Chapter 104: Scalar Products and Projections of Vectors
Get Full SolutionsPrecalculus with Trigonometry: Concepts and Applications was written by and is associated to the ISBN: 9781559533911. Since 30 problems in chapter 104: Scalar Products and Projections of Vectors have been answered, more than 18807 students have viewed full stepbystep solutions from this chapter. This textbook survival guide was created for the textbook: Precalculus with Trigonometry: Concepts and Applications, edition: 1. Chapter 104: Scalar Products and Projections of Vectors includes 30 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Arc length formula
The length of an arc in a circle of radius r intercepted by a central angle of u radians is s = r u.

Backtoback stemplot
A stemplot with leaves on either side used to compare two distributions.

Distance (in Cartesian space)
The distance d(P, Q) between and P(x, y, z) and Q(x, y, z) or d(P, Q) ((x )  x 2)2 + (y1  y2)2 + (z 1  z 2)2

Expanded form
The right side of u(v + w) = uv + uw.

Explicitly defined sequence
A sequence in which the kth term is given as a function of k.

Grapher or graphing utility
Graphing calculator or a computer with graphing software.

Identity properties
a + 0 = a, a ? 1 = a

Inverse variation
See Power function.

LRAM
A Riemann sum approximation of the area under a curve ƒ(x) from x = a to x = b using x1 as the lefthand endpoint of each subinterval

n factorial
For any positive integer n, n factorial is n! = n.(n  1) . (n  2) .... .3.2.1; zero factorial is 0! = 1

nth root of a complex number z
A complex number v such that vn = z

Open interval
An interval that does not include its endpoints.

Partial sums
See Sequence of partial sums.

Randomization
The principle of experimental design that makes it possible to use the laws of probability when making inferences.

Regression model
An equation found by regression and which can be used to predict unknown values.

Richter scale
A logarithmic scale used in measuring the intensity of an earthquake.

Semimajor axis
The distance from the center to a vertex of an ellipse.

Semiminor axis
The distance from the center of an ellipse to a point on the ellipse along a line perpendicular to the major axis.

Summation notation
The series a nk=1ak, where n is a natural number ( or ?) is in summation notation and is read "the sum of ak from k = 1 to n(or infinity).” k is the index of summation, and ak is the kth term of the series

Upper bound for real zeros
A number d is an upper bound for the set of real zeros of ƒ if ƒ(x) ? 0 whenever x > d.