 Chapter 11:
 Chapter 12:
 Chapter 13:
 Chapter 2:
 Chapter 4:
 Chapter 5:
 Chapter 6:
 Chapter 7:
 Chapter 8:
 Chapter 9:
Fundamentals of Differential Equations and Boundary Value Problems 6th Edition  Solutions by Chapter
Full solutions for Fundamentals of Differential Equations and Boundary Value Problems  6th Edition
ISBN: 9780321747747
Fundamentals of Differential Equations and Boundary Value Problems  6th Edition  Solutions by Chapter
Get Full SolutionsThis textbook survival guide was created for the textbook: Fundamentals of Differential Equations and Boundary Value Problems, edition: 6. Since problems from 10 chapters in Fundamentals of Differential Equations and Boundary Value Problems have been answered, more than 2459 students have viewed full stepbystep answer. The full stepbystep solution to problem in Fundamentals of Differential Equations and Boundary Value Problems were answered by , our top Math solution expert on 11/14/17, 08:38PM. Fundamentals of Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9780321747747. This expansive textbook survival guide covers the following chapters: 10.

Basis for V.
Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

Change of basis matrix M.
The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

Cholesky factorization
A = CTC = (L.J]))(L.J]))T for positive definite A.

Cofactor Cij.
Remove row i and column j; multiply the determinant by (I)i + j •

Complex conjugate
z = a  ib for any complex number z = a + ib. Then zz = Iz12.

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Dimension of vector space
dim(V) = number of vectors in any basis for V.

Distributive Law
A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Eigenvalue A and eigenvector x.
Ax = AX with x#O so det(A  AI) = o.

Elimination matrix = Elementary matrix Eij.
The identity matrix with an extra eij in the i, j entry (i # j). Then Eij A subtracts eij times row j of A from row i.

Fast Fourier Transform (FFT).
A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn1c can be computed with ne/2 multiplications. Revolutionary.

Full row rank r = m.
Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

Graph G.
Set of n nodes connected pairwise by m edges. A complete graph has all n(n  1)/2 edges between nodes. A tree has only n  1 edges and no closed loops.

Projection p = a(aTblaTa) onto the line through a.
P = aaT laTa has rank l.

Rank one matrix A = uvT f=. O.
Column and row spaces = lines cu and cv.

Right inverse A+.
If A has full row rank m, then A+ = AT(AAT)l has AA+ = 1m.

Simplex method for linear programming.
The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

Toeplitz matrix.
Constant down each diagonal = timeinvariant (shiftinvariant) filter.

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.