Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Textbooks / Math / Math in Our World 3

Math in Our World 3rd Edition Solutions

Do I need to buy Math in Our World | 3rd Edition to pass the class?

ISBN: 9780073519678

Math in Our World | 3rd Edition - Solutions by Chapter

Do I need to buy this book?
1 Review

79% of students who have bought this book said that they did not need the hard copy to pass the class. Were they right? Add what you think:

Math in Our World 3rd Edition Student Assesment

Thresa from University of Alabama - Tuscaloosa said

"If I knew then what I knew now I would not have bought the book. It was over priced and My professor only used it a few times."

Textbook: Math in Our World
Edition: 3
Author: David Sobecki Professor; Allan G. Bluman
ISBN: 9780073519678

This textbook survival guide was created for the textbook: Math in Our World, edition: 3. This expansive textbook survival guide covers the following chapters: 0. The full step-by-step solution to problem in Math in Our World were answered by , our top Math solution expert on 10/03/18, 06:29PM. Math in Our World was written by and is associated to the ISBN: 9780073519678. Since problems from 0 chapters in Math in Our World have been answered, more than 200 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.