×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / College Algebra and Trigonometry 7

College Algebra and Trigonometry 7th Edition - Solutions by Chapter

College Algebra and Trigonometry | 7th Edition | ISBN: 9781439048603 | Authors: Richard N. Aufmann

Full solutions for College Algebra and Trigonometry | 7th Edition

ISBN: 9781439048603

College Algebra and Trigonometry | 7th Edition | ISBN: 9781439048603 | Authors: Richard N. Aufmann

College Algebra and Trigonometry | 7th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 370 Reviews

This textbook survival guide was created for the textbook: College Algebra and Trigonometry, edition: 7. The full step-by-step solution to problem in College Algebra and Trigonometry were answered by , our top Math solution expert on 11/15/17, 04:29PM. This expansive textbook survival guide covers the following chapters: 12. College Algebra and Trigonometry was written by and is associated to the ISBN: 9781439048603. Since problems from 12 chapters in College Algebra and Trigonometry have been answered, more than 20893 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.