Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Solutions for Chapter 10: College Algebra and Trigonometry 7th Edition

College Algebra and Trigonometry | 7th Edition | ISBN: 9781439048603 | Authors: Richard N. Aufmann

Full solutions for College Algebra and Trigonometry | 7th Edition

ISBN: 9781439048603

College Algebra and Trigonometry | 7th Edition | ISBN: 9781439048603 | Authors: Richard N. Aufmann

Solutions for Chapter 10

Solutions for Chapter 10
4 5 0 290 Reviews
Textbook: College Algebra and Trigonometry
Edition: 7
Author: Richard N. Aufmann
ISBN: 9781439048603

College Algebra and Trigonometry was written by and is associated to the ISBN: 9781439048603. Chapter 10 includes 114 full step-by-step solutions. This textbook survival guide was created for the textbook: College Algebra and Trigonometry, edition: 7. Since 114 problems in chapter 10 have been answered, more than 20910 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).