Solutions for Chapter 5.3: Cramer's Rule, Inverses, and Volumes
Full solutions for Introduction to Linear Algebra  4th Edition
ISBN: 9780980232714
Solutions for Chapter 5.3: Cramer's Rule, Inverses, and Volumes
Get Full SolutionsThis expansive textbook survival guide covers the following chapters and their solutions. Since 1 problems in chapter 5.3: Cramer's Rule, Inverses, and Volumes have been answered, more than 8145 students have viewed full stepbystep solutions from this chapter. Chapter 5.3: Cramer's Rule, Inverses, and Volumes includes 1 full stepbystep solutions. Introduction to Linear Algebra was written by and is associated to the ISBN: 9780980232714. This textbook survival guide was created for the textbook: Introduction to Linear Algebra, edition: 4.

CayleyHamilton Theorem.
peA) = det(A  AI) has peA) = zero matrix.

Eigenvalue A and eigenvector x.
Ax = AX with x#O so det(A  AI) = o.

Elimination matrix = Elementary matrix Eij.
The identity matrix with an extra eij in the i, j entry (i # j). Then Eij A subtracts eij times row j of A from row i.

Factorization
A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Hermitian matrix A H = AT = A.
Complex analog a j i = aU of a symmetric matrix.

Hessenberg matrix H.
Triangular matrix with one extra nonzero adjacent diagonal.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Least squares solution X.
The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b  Ax is orthogonal to all columns of A.

Left nullspace N (AT).
Nullspace of AT = "left nullspace" of A because y T A = OT.

Network.
A directed graph that has constants Cl, ... , Cm associated with the edges.

Nilpotent matrix N.
Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Rank one matrix A = uvT f=. O.
Column and row spaces = lines cu and cv.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Stiffness matrix
If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

Unitary matrix UH = U T = UI.
Orthonormal columns (complex analog of Q).

Vector space V.
Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.