×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.8: The Existence and Uniqueness Theorem

Elementary Differential Equations and Boundary Value Problems | 10th Edition | ISBN: 9780470458310 | Authors: William E. Boyce

Full solutions for Elementary Differential Equations and Boundary Value Problems | 10th Edition

ISBN: 9780470458310

Elementary Differential Equations and Boundary Value Problems | 10th Edition | ISBN: 9780470458310 | Authors: William E. Boyce

Solutions for Chapter 2.8: The Existence and Uniqueness Theorem

Solutions for Chapter 2.8
4 5 0 260 Reviews
29
1
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 10
Author: William E. Boyce
ISBN: 9780470458310

Chapter 2.8: The Existence and Uniqueness Theorem includes 19 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 19 problems in chapter 2.8: The Existence and Uniqueness Theorem have been answered, more than 17600 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 10. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9780470458310.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password