×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 11.6: Series of Orthogonal Functions: Mean Convergence

Elementary Differential Equations and Boundary Value Problems | 10th Edition | ISBN: 9780470458310 | Authors: William E. Boyce

Full solutions for Elementary Differential Equations and Boundary Value Problems | 10th Edition

ISBN: 9780470458310

Elementary Differential Equations and Boundary Value Problems | 10th Edition | ISBN: 9780470458310 | Authors: William E. Boyce

Solutions for Chapter 11.6: Series of Orthogonal Functions: Mean Convergence

Chapter 11.6: Series of Orthogonal Functions: Mean Convergence includes 13 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 10. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9780470458310. Since 13 problems in chapter 11.6: Series of Orthogonal Functions: Mean Convergence have been answered, more than 16825 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password