×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide

Solutions for Chapter 9.9: Curl of a Vector Field

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Full solutions for Advanced Engineering Mathematics | 9th Edition

ISBN: 9780471488859

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Solutions for Chapter 9.9: Curl of a Vector Field

Solutions for Chapter 9.9
4 5 0 277 Reviews
31
1
Textbook: Advanced Engineering Mathematics
Edition: 9
Author: Erwin Kreyszig
ISBN: 9780471488859

Since 20 problems in chapter 9.9: Curl of a Vector Field have been answered, more than 44379 students have viewed full step-by-step solutions from this chapter. Chapter 9.9: Curl of a Vector Field includes 20 full step-by-step solutions. This textbook survival guide was created for the textbook: Advanced Engineering Mathematics, edition: 9. Advanced Engineering Mathematics was written by and is associated to the ISBN: 9780471488859. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
×
Reset your password