×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide

Solutions for Chapter 17.1: Geometry of Analytic Functions: Conformal Mapping

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Full solutions for Advanced Engineering Mathematics | 9th Edition

ISBN: 9780471488859

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Solutions for Chapter 17.1: Geometry of Analytic Functions: Conformal Mapping

Solutions for Chapter 17.1
4 5 0 321 Reviews
29
5
Textbook: Advanced Engineering Mathematics
Edition: 9
Author: Erwin Kreyszig
ISBN: 9780471488859

This textbook survival guide was created for the textbook: Advanced Engineering Mathematics, edition: 9. Advanced Engineering Mathematics was written by and is associated to the ISBN: 9780471488859. This expansive textbook survival guide covers the following chapters and their solutions. Since 30 problems in chapter 17.1: Geometry of Analytic Functions: Conformal Mapping have been answered, more than 44185 students have viewed full step-by-step solutions from this chapter. Chapter 17.1: Geometry of Analytic Functions: Conformal Mapping includes 30 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
×
Reset your password