×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide

Solutions for Chapter 20.9: Tridiagonalization and QR-Factorization

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Full solutions for Advanced Engineering Mathematics | 9th Edition

ISBN: 9780471488859

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Solutions for Chapter 20.9: Tridiagonalization and QR-Factorization

Advanced Engineering Mathematics was written by and is associated to the ISBN: 9780471488859. This textbook survival guide was created for the textbook: Advanced Engineering Mathematics, edition: 9. Chapter 20.9: Tridiagonalization and QR-Factorization includes 10 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 10 problems in chapter 20.9: Tridiagonalization and QR-Factorization have been answered, more than 43996 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B IIĀ·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
×
Reset your password