×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide

Solutions for Chapter 21.3: Methods for Systems and Higher Order ODEs

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Full solutions for Advanced Engineering Mathematics | 9th Edition

ISBN: 9780471488859

Advanced Engineering Mathematics | 9th Edition | ISBN: 9780471488859 | Authors: Erwin Kreyszig

Solutions for Chapter 21.3: Methods for Systems and Higher Order ODEs

Solutions for Chapter 21.3
4 5 0 273 Reviews
19
3
Textbook: Advanced Engineering Mathematics
Edition: 9
Author: Erwin Kreyszig
ISBN: 9780471488859

This textbook survival guide was created for the textbook: Advanced Engineering Mathematics, edition: 9. Chapter 21.3: Methods for Systems and Higher Order ODEs includes 21 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 21 problems in chapter 21.3: Methods for Systems and Higher Order ODEs have been answered, more than 44018 students have viewed full step-by-step solutions from this chapter. Advanced Engineering Mathematics was written by and is associated to the ISBN: 9780471488859.

Key Math Terms and definitions covered in this textbook
  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Outer product uv T

    = column times row = rank one matrix.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
×
Reset your password