×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide

Solutions for Chapter 16: Wave Motion on an Interval

Advanced Engineering Mathematics | 7th Edition | ISBN: 9781111427412 | Authors: Peter V. O'Neill

Full solutions for Advanced Engineering Mathematics | 7th Edition

ISBN: 9781111427412

Advanced Engineering Mathematics | 7th Edition | ISBN: 9781111427412 | Authors: Peter V. O'Neill

Solutions for Chapter 16: Wave Motion on an Interval

Solutions for Chapter 16
4 5 0 344 Reviews
14
2
Textbook: Advanced Engineering Mathematics
Edition: 7
Author: Peter V. O'Neill
ISBN: 9781111427412

Advanced Engineering Mathematics was written by and is associated to the ISBN: 9781111427412. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Advanced Engineering Mathematics, edition: 7. Since 61 problems in chapter 16: Wave Motion on an Interval have been answered, more than 15692 students have viewed full step-by-step solutions from this chapter. Chapter 16: Wave Motion on an Interval includes 61 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Calculus and Pre Calculus - Textbook Survival Guide
×
Reset your password