×
×

# Solutions for Chapter 3.3: Slope

## Full solutions for Introductory & Intermediate Algebra for College Students | 4th Edition

ISBN: 9780321758941

Solutions for Chapter 3.3: Slope

Solutions for Chapter 3.3
4 5 0 322 Reviews
18
3
##### ISBN: 9780321758941

Introductory & Intermediate Algebra for College Students was written by and is associated to the ISBN: 9780321758941. Since 85 problems in chapter 3.3: Slope have been answered, more than 75259 students have viewed full step-by-step solutions from this chapter. Chapter 3.3: Slope includes 85 full step-by-step solutions. This textbook survival guide was created for the textbook: Introductory & Intermediate Algebra for College Students, edition: 4. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
• Augmented matrix [A b].

Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

• Change of basis matrix M.

The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

• Elimination matrix = Elementary matrix Eij.

The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

• Fourier matrix F.

Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

• Gram-Schmidt orthogonalization A = QR.

Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

• Hankel matrix H.

Constant along each antidiagonal; hij depends on i + j.

• Identity matrix I (or In).

Diagonal entries = 1, off-diagonal entries = 0.

• Indefinite matrix.

A symmetric matrix with eigenvalues of both signs (+ and - ).

• Krylov subspace Kj(A, b).

The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

• Multiplication Ax

= Xl (column 1) + ... + xn(column n) = combination of columns.

• Nullspace N (A)

= All solutions to Ax = O. Dimension n - r = (# columns) - rank.

• Positive definite matrix A.

Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

• Skew-symmetric matrix K.

The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

• Solvable system Ax = b.

The right side b is in the column space of A.

• Spanning set.

Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

• Special solutions to As = O.

One free variable is Si = 1, other free variables = o.

• Subspace S of V.

Any vector space inside V, including V and Z = {zero vector only}.

• Symmetric matrix A.

The transpose is AT = A, and aU = a ji. A-I is also symmetric.

• Triangle inequality II u + v II < II u II + II v II.

For matrix norms II A + B II < II A II + II B II·

• Unitary matrix UH = U T = U-I.

Orthonormal columns (complex analog of Q).

×