×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Solutions for Chapter 11.2: The Quadratic Formula

Introductory & Intermediate Algebra for College Students | 4th Edition | ISBN: 9780321758941 | Authors: Robert F. Blitzer

Full solutions for Introductory & Intermediate Algebra for College Students | 4th Edition

ISBN: 9780321758941

Introductory & Intermediate Algebra for College Students | 4th Edition | ISBN: 9780321758941 | Authors: Robert F. Blitzer

Solutions for Chapter 11.2: The Quadratic Formula

Solutions for Chapter 11.2
4 5 0 315 Reviews
15
2
Textbook: Introductory & Intermediate Algebra for College Students
Edition: 4
Author: Robert F. Blitzer
ISBN: 9780321758941

This textbook survival guide was created for the textbook: Introductory & Intermediate Algebra for College Students, edition: 4. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 11.2: The Quadratic Formula includes 126 full step-by-step solutions. Since 126 problems in chapter 11.2: The Quadratic Formula have been answered, more than 71713 students have viewed full step-by-step solutions from this chapter. Introductory & Intermediate Algebra for College Students was written by and is associated to the ISBN: 9780321758941.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
×
Reset your password