×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 2: RATES OF CHANGE AND LINEAR FUNCTIONS

Explorations in College Algebra | 5th Edition | ISBN: 9780470466445 | Authors: Linda Almgren Kime

Full solutions for Explorations in College Algebra | 5th Edition

ISBN: 9780470466445

Explorations in College Algebra | 5th Edition | ISBN: 9780470466445 | Authors: Linda Almgren Kime

Solutions for Chapter 2: RATES OF CHANGE AND LINEAR FUNCTIONS

Solutions for Chapter 2
4 5 0 318 Reviews
24
4
Textbook: Explorations in College Algebra
Edition: 5
Author: Linda Almgren Kime
ISBN: 9780470466445

This expansive textbook survival guide covers the following chapters and their solutions. Since 261 problems in chapter 2: RATES OF CHANGE AND LINEAR FUNCTIONS have been answered, more than 10438 students have viewed full step-by-step solutions from this chapter. Chapter 2: RATES OF CHANGE AND LINEAR FUNCTIONS includes 261 full step-by-step solutions. This textbook survival guide was created for the textbook: Explorations in College Algebra, edition: 5. Explorations in College Algebra was written by and is associated to the ISBN: 9780470466445.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.