×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Solutions for Chapter 2.1: Linear Equations in One Variable

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Full solutions for Intermediate Algebra | 6th Edition

ISBN: 9780321785046

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Solutions for Chapter 2.1: Linear Equations in One Variable

Solutions for Chapter 2.1
4 5 0 299 Reviews
27
1
Textbook: Intermediate Algebra
Edition: 6
Author: Elayn El Martin-Gay
ISBN: 9780321785046

This textbook survival guide was created for the textbook: Intermediate Algebra, edition: 6. Chapter 2.1: Linear Equations in One Variable includes 98 full step-by-step solutions. Since 98 problems in chapter 2.1: Linear Equations in One Variable have been answered, more than 65538 students have viewed full step-by-step solutions from this chapter. Intermediate Algebra was written by and is associated to the ISBN: 9780321785046. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
×
Reset your password