×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 7.5: Rationalizing Denominators and Numerators of Radical Expressions

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Full solutions for Intermediate Algebra | 6th Edition

ISBN: 9780321785046

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Solutions for Chapter 7.5: Rationalizing Denominators and Numerators of Radical Expressions

Solutions for Chapter 7.5
4 5 0 253 Reviews
13
1
Textbook: Intermediate Algebra
Edition: 6
Author: Elayn El Martin-Gay
ISBN: 9780321785046

Chapter 7.5: Rationalizing Denominators and Numerators of Radical Expressions includes 98 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Intermediate Algebra, edition: 6. Since 98 problems in chapter 7.5: Rationalizing Denominators and Numerators of Radical Expressions have been answered, more than 85502 students have viewed full step-by-step solutions from this chapter. Intermediate Algebra was written by and is associated to the ISBN: 9780321785046.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)ยท(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.