×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Solutions for Chapter 7.6: Radical Equations and Problem Solving

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Full solutions for Intermediate Algebra | 6th Edition

ISBN: 9780321785046

Intermediate Algebra | 6th Edition | ISBN: 9780321785046 | Authors: Elayn El Martin-Gay

Solutions for Chapter 7.6: Radical Equations and Problem Solving

Solutions for Chapter 7.6
4 5 0 322 Reviews
14
3
Textbook: Intermediate Algebra
Edition: 6
Author: Elayn El Martin-Gay
ISBN: 9780321785046

This textbook survival guide was created for the textbook: Intermediate Algebra, edition: 6. Chapter 7.6: Radical Equations and Problem Solving includes 100 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 100 problems in chapter 7.6: Radical Equations and Problem Solving have been answered, more than 59560 students have viewed full step-by-step solutions from this chapter. Intermediate Algebra was written by and is associated to the ISBN: 9780321785046.

Key Math Terms and definitions covered in this textbook
  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
×
Reset your password