×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 1: Algebra and Trigonometry 9th Edition

Algebra and Trigonometry | 9th Edition | ISBN: 9780321716569 | Authors: Michael Sullivan

Full solutions for Algebra and Trigonometry | 9th Edition

ISBN: 9780321716569

Algebra and Trigonometry | 9th Edition | ISBN: 9780321716569 | Authors: Michael Sullivan

Solutions for Chapter 1

Solutions for Chapter 1
4 5 0 419 Reviews
29
2
Textbook: Algebra and Trigonometry
Edition: 9
Author: Michael Sullivan
ISBN: 9780321716569

Since 105 problems in chapter 1 have been answered, more than 61462 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Algebra and Trigonometry, edition: 9. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 1 includes 105 full step-by-step solutions. Algebra and Trigonometry was written by and is associated to the ISBN: 9780321716569.

Key Math Terms and definitions covered in this textbook
  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Outer product uv T

    = column times row = rank one matrix.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.