Solutions for Chapter 115: Complex Numbers and Polar Coordinates
Full solutions for Trigonometry  7th Edition
ISBN: 9781111826857
Solutions for Chapter 115: Complex Numbers and Polar Coordinates
Get Full SolutionsThis expansive textbook survival guide covers the following chapters and their solutions. Since 1 problems in chapter 115: Complex Numbers and Polar Coordinates have been answered, more than 26282 students have viewed full stepbystep solutions from this chapter. Trigonometry was written by and is associated to the ISBN: 9781111826857. This textbook survival guide was created for the textbook: Trigonometry, edition: 7. Chapter 115: Complex Numbers and Polar Coordinates includes 1 full stepbystep solutions.

Cholesky factorization
A = CTC = (L.J]))(L.J]))T for positive definite A.

Column picture of Ax = b.
The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Diagonal matrix D.
dij = 0 if i # j. Blockdiagonal: zero outside square blocks Du.

Fibonacci numbers
0,1,1,2,3,5, ... satisfy Fn = Fnl + Fn 2 = (A7 A~)I()q A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).
Use AT for complex A.

Free columns of A.
Columns without pivots; these are combinations of earlier columns.

GaussJordan method.
Invert A by row operations on [A I] to reach [I AI].

Hessenberg matrix H.
Triangular matrix with one extra nonzero adjacent diagonal.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Least squares solution X.
The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b  Ax is orthogonal to all columns of A.

Multiplier eij.
The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

Normal equation AT Ax = ATb.
Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b  Ax) = o.

Orthogonal subspaces.
Every v in V is orthogonal to every w in W.

Outer product uv T
= column times row = rank one matrix.

Pascal matrix
Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

Projection p = a(aTblaTa) onto the line through a.
P = aaT laTa has rank l.

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Sum V + W of subs paces.
Space of all (v in V) + (w in W). Direct sum: V n W = to}.