Solutions for Chapter 118: Complex Numbers and Polar Coordinates
Full solutions for Trigonometry  7th Edition
ISBN: 9781111826857
Solutions for Chapter 118: Complex Numbers and Polar Coordinates
Get Full SolutionsThis expansive textbook survival guide covers the following chapters and their solutions. Trigonometry was written by and is associated to the ISBN: 9781111826857. This textbook survival guide was created for the textbook: Trigonometry, edition: 7. Since 1 problems in chapter 118: Complex Numbers and Polar Coordinates have been answered, more than 26000 students have viewed full stepbystep solutions from this chapter. Chapter 118: Complex Numbers and Polar Coordinates includes 1 full stepbystep solutions.

Circulant matrix C.
Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn  l . Cx = convolution c * x. Eigenvectors in F.

Companion matrix.
Put CI, ... ,Cn in row n and put n  1 ones just above the main diagonal. Then det(A  AI) = ±(CI + c2A + C3A 2 + .•. + cnA nl  An).

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Diagonal matrix D.
dij = 0 if i # j. Blockdiagonal: zero outside square blocks Du.

Full row rank r = m.
Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Multiplication Ax
= Xl (column 1) + ... + xn(column n) = combination of columns.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Nullspace matrix N.
The columns of N are the n  r special solutions to As = O.

Nullspace N (A)
= All solutions to Ax = O. Dimension n  r = (# columns)  rank.

Pascal matrix
Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Reflection matrix (Householder) Q = I 2uuT.
Unit vector u is reflected to Qu = u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q1 = Q.

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.

Schwarz inequality
Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

Singular Value Decomposition
(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.