Solutions for Chapter 21: Complex Numbers and Polar Coordinates
Full solutions for Trigonometry  7th Edition
ISBN: 9781111826857
Solutions for Chapter 21: Complex Numbers and Polar Coordinates
Get Full SolutionsThis textbook survival guide was created for the textbook: Trigonometry, edition: 7. Since 1 problems in chapter 21: Complex Numbers and Polar Coordinates have been answered, more than 26081 students have viewed full stepbystep solutions from this chapter. Chapter 21: Complex Numbers and Polar Coordinates includes 1 full stepbystep solutions. Trigonometry was written by and is associated to the ISBN: 9781111826857. This expansive textbook survival guide covers the following chapters and their solutions.

Cholesky factorization
A = CTC = (L.J]))(L.J]))T for positive definite A.

Column picture of Ax = b.
The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

Complete solution x = x p + Xn to Ax = b.
(Particular x p) + (x n in nullspace).

Dimension of vector space
dim(V) = number of vectors in any basis for V.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Hessenberg matrix H.
Triangular matrix with one extra nonzero adjacent diagonal.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Iterative method.
A sequence of steps intended to approach the desired solution.

Lucas numbers
Ln = 2,J, 3, 4, ... satisfy Ln = L n l +Ln 2 = A1 +A~, with AI, A2 = (1 ± /5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

Matrix multiplication AB.
The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

Minimal polynomial of A.
The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A  AI) if no eigenvalues are repeated; always meA) divides peA).

Multiplier eij.
The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Plane (or hyperplane) in Rn.
Vectors x with aT x = O. Plane is perpendicular to a =1= O.

Random matrix rand(n) or randn(n).
MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

Right inverse A+.
If A has full row rank m, then A+ = AT(AAT)l has AA+ = 1m.

Rotation matrix
R = [~ CS ] rotates the plane by () and R 1 = RT rotates back by (). Eigenvalues are eiO and eiO , eigenvectors are (1, ±i). c, s = cos (), sin ().

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·