Solutions for Chapter 23: Complex Numbers and Polar Coordinates
Full solutions for Trigonometry  7th Edition
ISBN: 9781111826857
Solutions for Chapter 23: Complex Numbers and Polar Coordinates
Get Full SolutionsChapter 23: Complex Numbers and Polar Coordinates includes 1 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Trigonometry, edition: 7. Since 1 problems in chapter 23: Complex Numbers and Polar Coordinates have been answered, more than 25702 students have viewed full stepbystep solutions from this chapter. Trigonometry was written by and is associated to the ISBN: 9781111826857.

Basis for V.
Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

Column picture of Ax = b.
The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

Column space C (A) =
space of all combinations of the columns of A.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Determinant IAI = det(A).
Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

Factorization
A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

Fast Fourier Transform (FFT).
A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn1c can be computed with ne/2 multiplications. Revolutionary.

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Markov matrix M.
All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

Multiplication Ax
= Xl (column 1) + ... + xn(column n) = combination of columns.

Nilpotent matrix N.
Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Nullspace N (A)
= All solutions to Ax = O. Dimension n  r = (# columns)  rank.

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Polar decomposition A = Q H.
Orthogonal Q times positive (semi)definite H.

Semidefinite matrix A.
(Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·