×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Solutions for Chapter 1.7: MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Full solutions for Elementary Linear Algebra: A Matrix Approach | 2nd Edition

ISBN: 9780131871410

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Solutions for Chapter 1.7: MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS

Solutions for Chapter 1.7
4 5 0 258 Reviews
11
4
Textbook: Elementary Linear Algebra: A Matrix Approach
Edition: 2
Author: Lawrence E. Spence
ISBN: 9780131871410

Elementary Linear Algebra: A Matrix Approach was written by and is associated to the ISBN: 9780131871410. Since 104 problems in chapter 1.7: MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS have been answered, more than 21453 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Elementary Linear Algebra: A Matrix Approach, edition: 2. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 1.7: MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS includes 104 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Outer product uv T

    = column times row = rank one matrix.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
×
Reset your password