×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide

Solutions for Chapter 5.4: EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Full solutions for Elementary Linear Algebra: A Matrix Approach | 2nd Edition

ISBN: 9780131871410

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Solutions for Chapter 5.4: EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION

Solutions for Chapter 5.4
4 5 0 370 Reviews
26
5
Textbook: Elementary Linear Algebra: A Matrix Approach
Edition: 2
Author: Lawrence E. Spence
ISBN: 9780131871410

Chapter 5.4: EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION includes 86 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Linear Algebra: A Matrix Approach, edition: 2. This expansive textbook survival guide covers the following chapters and their solutions. Elementary Linear Algebra: A Matrix Approach was written by and is associated to the ISBN: 9780131871410. Since 86 problems in chapter 5.4: EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION have been answered, more than 25258 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
×
Reset your password