×
Log in to StudySoup
Get Full Access to Mathematics Education - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Mathematics Education - Textbook Survival Guide

Solutions for Chapter 2: Sets

A Survey of Mathematics with Applications | 9th Edition | ISBN:  9780321759665 | Authors: Allen R. Angel, Christine D. Abbott, Dennis C. Runde

Full solutions for A Survey of Mathematics with Applications | 9th Edition

ISBN: 9780321759665

A Survey of Mathematics with Applications | 9th Edition | ISBN:  9780321759665 | Authors: Allen R. Angel, Christine D. Abbott, Dennis C. Runde

Solutions for Chapter 2: Sets

Solutions for Chapter 2
4 5 0 362 Reviews
22
2
Textbook: A Survey of Mathematics with Applications
Edition: 9
Author: Allen R. Angel, Christine D. Abbott, Dennis C. Runde
ISBN: 9780321759665

A Survey of Mathematics with Applications was written by and is associated to the ISBN: 9780321759665. Chapter 2: Sets includes 82 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: A Survey of Mathematics with Applications, edition: 9. Since 82 problems in chapter 2: Sets have been answered, more than 78634 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

×
Log in to StudySoup
Get Full Access to Mathematics Education - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Mathematics Education - Textbook Survival Guide
×
Reset your password