×
Log in to StudySoup
Get Full Access to Mathematics Education - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Mathematics Education - Textbook Survival Guide

Solutions for Chapter 13.6: Statistics

A Survey of Mathematics with Applications | 9th Edition | ISBN:  9780321759665 | Authors: Allen R. Angel, Christine D. Abbott, Dennis C. Runde

Full solutions for A Survey of Mathematics with Applications | 9th Edition

ISBN: 9780321759665

A Survey of Mathematics with Applications | 9th Edition | ISBN:  9780321759665 | Authors: Allen R. Angel, Christine D. Abbott, Dennis C. Runde

Solutions for Chapter 13.6: Statistics

Solutions for Chapter 13.6
4 5 0 323 Reviews
27
2
Textbook: A Survey of Mathematics with Applications
Edition: 9
Author: Allen R. Angel, Christine D. Abbott, Dennis C. Runde
ISBN: 9780321759665

Chapter 13.6: Statistics includes 92 full step-by-step solutions. This textbook survival guide was created for the textbook: A Survey of Mathematics with Applications, edition: 9. This expansive textbook survival guide covers the following chapters and their solutions. A Survey of Mathematics with Applications was written by and is associated to the ISBN: 9780321759665. Since 92 problems in chapter 13.6: Statistics have been answered, more than 79466 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Outer product uv T

    = column times row = rank one matrix.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Mathematics Education - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Mathematics Education - Textbook Survival Guide
×
Reset your password