×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / College Algebra 7

College Algebra 7th Edition - Solutions by Chapter

College Algebra | 7th Edition | ISBN: 9781439048610 | Authors: Richard N. Aufmann, Vernon C. Barker, Richard D. Nation

Full solutions for College Algebra | 7th Edition

ISBN: 9781439048610

College Algebra | 7th Edition | ISBN: 9781439048610 | Authors: Richard N. Aufmann, Vernon C. Barker, Richard D. Nation

College Algebra | 7th Edition - Solutions by Chapter

The full step-by-step solution to problem in College Algebra were answered by , our top Math solution expert on 01/02/18, 08:47PM. This textbook survival guide was created for the textbook: College Algebra, edition: 7. Since problems from 9 chapters in College Algebra have been answered, more than 128016 students have viewed full step-by-step answer. This expansive textbook survival guide covers the following chapters: 9. College Algebra was written by and is associated to the ISBN: 9781439048610.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.