×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 8: Sequences, Series and Probability

College Algebra | 7th Edition | ISBN: 9781439048610 | Authors: Richard N. Aufmann, Vernon C. Barker, Richard D. Nation

Full solutions for College Algebra | 7th Edition

ISBN: 9781439048610

College Algebra | 7th Edition | ISBN: 9781439048610 | Authors: Richard N. Aufmann, Vernon C. Barker, Richard D. Nation

Solutions for Chapter 8: Sequences, Series and Probability

Solutions for Chapter 8
4 5 0 395 Reviews
31
0
Textbook: College Algebra
Edition: 7
Author: Richard N. Aufmann, Vernon C. Barker, Richard D. Nation
ISBN: 9781439048610

This textbook survival guide was created for the textbook: College Algebra, edition: 7. Since 499 problems in chapter 8: Sequences, Series and Probability have been answered, more than 86597 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. College Algebra was written by and is associated to the ISBN: 9781439048610. Chapter 8: Sequences, Series and Probability includes 499 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.