×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.3: THE RUNGE-KUTTA METHOD

Differential Equations 00 | 4th Edition | ISBN: 9780495561989 | Authors: Paul (Paul Blanchard) Blanchard, Robert L. Devaney, Glen R. Hall

Full solutions for Differential Equations 00 | 4th Edition

ISBN: 9780495561989

Differential Equations 00 | 4th Edition | ISBN: 9780495561989 | Authors: Paul (Paul Blanchard) Blanchard, Robert L. Devaney, Glen R. Hall

Solutions for Chapter 7.3: THE RUNGE-KUTTA METHOD

This expansive textbook survival guide covers the following chapters and their solutions. Differential Equations 00 was written by and is associated to the ISBN: 9780495561989. This textbook survival guide was created for the textbook: Differential Equations 00, edition: 4. Chapter 7.3: THE RUNGE-KUTTA METHOD includes 8 full step-by-step solutions. Since 8 problems in chapter 7.3: THE RUNGE-KUTTA METHOD have been answered, more than 16118 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password