×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 1.2: INTRODUCTION TO DIFFERENTIAL EQUATIONS

Differential Equations with Boundary-Value Problems, | 8th Edition | ISBN: 9781111827069 | Authors: Dennis G. Zill, Warren S. Wright

Full solutions for Differential Equations with Boundary-Value Problems, | 8th Edition

ISBN: 9781111827069

Differential Equations with Boundary-Value Problems, | 8th Edition | ISBN: 9781111827069 | Authors: Dennis G. Zill, Warren S. Wright

Solutions for Chapter 1.2: INTRODUCTION TO DIFFERENTIAL EQUATIONS

Solutions for Chapter 1.2
4 5 0 342 Reviews
16
2
Textbook: Differential Equations with Boundary-Value Problems,
Edition: 8
Author: Dennis G. Zill, Warren S. Wright
ISBN: 9781111827069

This textbook survival guide was created for the textbook: Differential Equations with Boundary-Value Problems,, edition: 8. Since 51 problems in chapter 1.2: INTRODUCTION TO DIFFERENTIAL EQUATIONS have been answered, more than 21223 students have viewed full step-by-step solutions from this chapter. Chapter 1.2: INTRODUCTION TO DIFFERENTIAL EQUATIONS includes 51 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Differential Equations with Boundary-Value Problems, was written by and is associated to the ISBN: 9781111827069.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Outer product uv T

    = column times row = rank one matrix.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password