Solutions for Chapter 6: Systems of Equations and Inequalities

College Algebra | 9th Edition | ISBN: 9781133963028 | Authors: Ron Larson

Full solutions for College Algebra | 9th Edition

ISBN: 9781133963028

College Algebra | 9th Edition | ISBN: 9781133963028 | Authors: Ron Larson

Solutions for Chapter 6: Systems of Equations and Inequalities

Solutions for Chapter 6
4 5 0 358 Reviews
11
2
Textbook: College Algebra
Edition: 9
Author: Ron Larson
ISBN: 9781133963028

Chapter 6: Systems of Equations and Inequalities includes 522 full step-by-step solutions. Since 522 problems in chapter 6: Systems of Equations and Inequalities have been answered, more than 18356 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: College Algebra, edition: 9. College Algebra was written by and is associated to the ISBN: 9781133963028. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here