×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5: Sequences, Mathematical Induction, and Recursion

Discrete Mathematics: Introduction to Mathematical Reasoning | 1st Edition | ISBN: 9780495826170 | Authors: Susanna S. Epp

Full solutions for Discrete Mathematics: Introduction to Mathematical Reasoning | 1st Edition

ISBN: 9780495826170

Discrete Mathematics: Introduction to Mathematical Reasoning | 1st Edition | ISBN: 9780495826170 | Authors: Susanna S. Epp

Solutions for Chapter 5: Sequences, Mathematical Induction, and Recursion

Solutions for Chapter 5
4 5 0 242 Reviews
12
1
Textbook: Discrete Mathematics: Introduction to Mathematical Reasoning
Edition: 1
Author: Susanna S. Epp
ISBN: 9780495826170

Since 307 problems in chapter 5: Sequences, Mathematical Induction, and Recursion have been answered, more than 17079 students have viewed full step-by-step solutions from this chapter. Discrete Mathematics: Introduction to Mathematical Reasoning was written by and is associated to the ISBN: 9780495826170. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Discrete Mathematics: Introduction to Mathematical Reasoning, edition: 1. Chapter 5: Sequences, Mathematical Induction, and Recursion includes 307 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password