×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 7.1: Laplace Transforms and Inverse Transforms

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Full solutions for Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition

ISBN: 9780321796981

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Solutions for Chapter 7.1: Laplace Transforms and Inverse Transforms

Solutions for Chapter 7.1
4 5 0 312 Reviews
18
4
Textbook: Differential Equations and Boundary Value Problems: Computing and Modeling
Edition: 5
Author: C. Henry Edwards, David E. Penney, David T. Calvis
ISBN: 9780321796981

Chapter 7.1: Laplace Transforms and Inverse Transforms includes 42 full step-by-step solutions. Since 42 problems in chapter 7.1: Laplace Transforms and Inverse Transforms have been answered, more than 38630 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Differential Equations and Boundary Value Problems: Computing and Modeling was written by and is associated to the ISBN: 9780321796981. This textbook survival guide was created for the textbook: Differential Equations and Boundary Value Problems: Computing and Modeling, edition: 5.

Key Math Terms and definitions covered in this textbook
  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.