×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 10.2: Applications of Eigenfunction Series

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Full solutions for Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition

ISBN: 9780321796981

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Solutions for Chapter 10.2: Applications of Eigenfunction Series

Solutions for Chapter 10.2
4 5 0 398 Reviews
15
1
Textbook: Differential Equations and Boundary Value Problems: Computing and Modeling
Edition: 5
Author: C. Henry Edwards, David E. Penney, David T. Calvis
ISBN: 9780321796981

Chapter 10.2: Applications of Eigenfunction Series includes 20 full step-by-step solutions. This textbook survival guide was created for the textbook: Differential Equations and Boundary Value Problems: Computing and Modeling, edition: 5. Since 20 problems in chapter 10.2: Applications of Eigenfunction Series have been answered, more than 15791 students have viewed full step-by-step solutions from this chapter. Differential Equations and Boundary Value Problems: Computing and Modeling was written by and is associated to the ISBN: 9780321796981. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Outer product uv T

    = column times row = rank one matrix.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password