Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Solutions for Chapter 8: Additional Topics in Trigonometry

Algebra and Trigonometry | 3rd Edition | ISBN: 9780470648032 | Authors: Cynthia Y. Young

Full solutions for Algebra and Trigonometry | 3rd Edition

ISBN: 9780470648032

Algebra and Trigonometry | 3rd Edition | ISBN: 9780470648032 | Authors: Cynthia Y. Young

Solutions for Chapter 8: Additional Topics in Trigonometry

Solutions for Chapter 8
4 5 0 307 Reviews
Textbook: Algebra and Trigonometry
Edition: 3
Author: Cynthia Y. Young
ISBN: 9780470648032

This textbook survival guide was created for the textbook: Algebra and Trigonometry, edition: 3. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 8: Additional Topics in Trigonometry includes 890 full step-by-step solutions. Since 890 problems in chapter 8: Additional Topics in Trigonometry have been answered, more than 89187 students have viewed full step-by-step solutions from this chapter. Algebra and Trigonometry was written by and is associated to the ISBN: 9780470648032.

Key Math Terms and definitions covered in this textbook
  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.