×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 10: BOUNDARIES IN THE PLANE AND IN SPACE

Partial Differential Equations: An Introduction | 2nd Edition | ISBN: 9780470054567 | Authors: Walter A. Strauss

Full solutions for Partial Differential Equations: An Introduction | 2nd Edition

ISBN: 9780470054567

Partial Differential Equations: An Introduction | 2nd Edition | ISBN: 9780470054567 | Authors: Walter A. Strauss

Solutions for Chapter 10: BOUNDARIES IN THE PLANE AND IN SPACE

Solutions for Chapter 10
4 5 0 311 Reviews
14
1
Textbook: Partial Differential Equations: An Introduction
Edition: 2
Author: Walter A. Strauss
ISBN: 9780470054567

Partial Differential Equations: An Introduction was written by and is associated to the ISBN: 9780470054567. This textbook survival guide was created for the textbook: Partial Differential Equations: An Introduction, edition: 2. This expansive textbook survival guide covers the following chapters and their solutions. Since 63 problems in chapter 10: BOUNDARIES IN THE PLANE AND IN SPACE have been answered, more than 5832 students have viewed full step-by-step solutions from this chapter. Chapter 10: BOUNDARIES IN THE PLANE AND IN SPACE includes 63 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password