×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 13: PDE PROBLEMS FROM PHYSICS

Partial Differential Equations: An Introduction | 2nd Edition | ISBN: 9780470054567 | Authors: Walter A. Strauss

Full solutions for Partial Differential Equations: An Introduction | 2nd Edition

ISBN: 9780470054567

Partial Differential Equations: An Introduction | 2nd Edition | ISBN: 9780470054567 | Authors: Walter A. Strauss

Solutions for Chapter 13: PDE PROBLEMS FROM PHYSICS

Solutions for Chapter 13
4 5 0 332 Reviews
14
2
Textbook: Partial Differential Equations: An Introduction
Edition: 2
Author: Walter A. Strauss
ISBN: 9780470054567

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 13: PDE PROBLEMS FROM PHYSICS includes 28 full step-by-step solutions. This textbook survival guide was created for the textbook: Partial Differential Equations: An Introduction, edition: 2. Since 28 problems in chapter 13: PDE PROBLEMS FROM PHYSICS have been answered, more than 5522 students have viewed full step-by-step solutions from this chapter. Partial Differential Equations: An Introduction was written by and is associated to the ISBN: 9780470054567.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password