×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6.4: Values of the Trigonometric Functions

Algebra and Trigonometry with Analytic Geometry | 12th Edition | ISBN: 9780495559719 | Authors: Earl Swokowski, Jeffery A. Cole

Full solutions for Algebra and Trigonometry with Analytic Geometry | 12th Edition

ISBN: 9780495559719

Algebra and Trigonometry with Analytic Geometry | 12th Edition | ISBN: 9780495559719 | Authors: Earl Swokowski, Jeffery A. Cole

Solutions for Chapter 6.4: Values of the Trigonometric Functions

Solutions for Chapter 6.4
4 5 0 415 Reviews
20
1
Textbook: Algebra and Trigonometry with Analytic Geometry
Edition: 12
Author: Earl Swokowski, Jeffery A. Cole
ISBN: 9780495559719

Since 44 problems in chapter 6.4: Values of the Trigonometric Functions have been answered, more than 37702 students have viewed full step-by-step solutions from this chapter. Chapter 6.4: Values of the Trigonometric Functions includes 44 full step-by-step solutions. This textbook survival guide was created for the textbook: Algebra and Trigonometry with Analytic Geometry, edition: 12. This expansive textbook survival guide covers the following chapters and their solutions. Algebra and Trigonometry with Analytic Geometry was written by and is associated to the ISBN: 9780495559719.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password