×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.1: Verifying Trigonometry Identities

Algebra and Trigonometry with Analytic Geometry | 12th Edition | ISBN: 9780495559719 | Authors: Earl Swokowski, Jeffery A. Cole

Full solutions for Algebra and Trigonometry with Analytic Geometry | 12th Edition

ISBN: 9780495559719

Algebra and Trigonometry with Analytic Geometry | 12th Edition | ISBN: 9780495559719 | Authors: Earl Swokowski, Jeffery A. Cole

Solutions for Chapter 7.1: Verifying Trigonometry Identities

Solutions for Chapter 7.1
4 5 0 304 Reviews
17
4
Textbook: Algebra and Trigonometry with Analytic Geometry
Edition: 12
Author: Earl Swokowski, Jeffery A. Cole
ISBN: 9780495559719

Algebra and Trigonometry with Analytic Geometry was written by and is associated to the ISBN: 9780495559719. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Algebra and Trigonometry with Analytic Geometry, edition: 12. Since 76 problems in chapter 7.1: Verifying Trigonometry Identities have been answered, more than 34744 students have viewed full step-by-step solutions from this chapter. Chapter 7.1: Verifying Trigonometry Identities includes 76 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password