×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8.1: The Law of Sines

Algebra and Trigonometry with Analytic Geometry | 12th Edition | ISBN: 9780495559719 | Authors: Earl Swokowski, Jeffery A. Cole

Full solutions for Algebra and Trigonometry with Analytic Geometry | 12th Edition

ISBN: 9780495559719

Algebra and Trigonometry with Analytic Geometry | 12th Edition | ISBN: 9780495559719 | Authors: Earl Swokowski, Jeffery A. Cole

Solutions for Chapter 8.1: The Law of Sines

Solutions for Chapter 8.1
4 5 0 316 Reviews
12
4
Textbook: Algebra and Trigonometry with Analytic Geometry
Edition: 12
Author: Earl Swokowski, Jeffery A. Cole
ISBN: 9780495559719

Chapter 8.1: The Law of Sines includes 31 full step-by-step solutions. Since 31 problems in chapter 8.1: The Law of Sines have been answered, more than 33599 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Algebra and Trigonometry with Analytic Geometry, edition: 12. This expansive textbook survival guide covers the following chapters and their solutions. Algebra and Trigonometry with Analytic Geometry was written by and is associated to the ISBN: 9780495559719.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password