×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6.2: Trigonometric Functions: Unit Circle Approach

Precalculus Enhanced with Graphing Utilities | 6th Edition | ISBN: 9780132854351 | Authors: Michael Sullivan

Full solutions for Precalculus Enhanced with Graphing Utilities | 6th Edition

ISBN: 9780132854351

Precalculus Enhanced with Graphing Utilities | 6th Edition | ISBN: 9780132854351 | Authors: Michael Sullivan

Solutions for Chapter 6.2: Trigonometric Functions: Unit Circle Approach

Solutions for Chapter 6.2
4 5 0 266 Reviews
17
3
Textbook: Precalculus Enhanced with Graphing Utilities
Edition: 6
Author: Michael Sullivan
ISBN: 9780132854351

Chapter 6.2: Trigonometric Functions: Unit Circle Approach includes 135 full step-by-step solutions. This textbook survival guide was created for the textbook: Precalculus Enhanced with Graphing Utilities, edition: 6. Since 135 problems in chapter 6.2: Trigonometric Functions: Unit Circle Approach have been answered, more than 53425 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Precalculus Enhanced with Graphing Utilities was written by and is associated to the ISBN: 9780132854351.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password