Solutions for Chapter Chapter 16: Sequences; Induction; the Binomial Theorem
Full solutions for Precalculus Enhanced with Graphing Utilities  6th Edition
ISBN: 9780132854351
Solutions for Chapter Chapter 16: Sequences; Induction; the Binomial Theorem
Get Full SolutionsSince 1 problems in chapter Chapter 16: Sequences; Induction; the Binomial Theorem have been answered, more than 59543 students have viewed full stepbystep solutions from this chapter. Chapter Chapter 16: Sequences; Induction; the Binomial Theorem includes 1 full stepbystep solutions. Precalculus Enhanced with Graphing Utilities was written by and is associated to the ISBN: 9780132854351. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Precalculus Enhanced with Graphing Utilities, edition: 6.

Basis for V.
Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

CayleyHamilton Theorem.
peA) = det(A  AI) has peA) = zero matrix.

Companion matrix.
Put CI, ... ,Cn in row n and put n  1 ones just above the main diagonal. Then det(A  AI) = ±(CI + c2A + C3A 2 + .•. + cnA nl  An).

Distributive Law
A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

Elimination matrix = Elementary matrix Eij.
The identity matrix with an extra eij in the i, j entry (i # j). Then Eij A subtracts eij times row j of A from row i.

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Free variable Xi.
Column i has no pivot in elimination. We can give the n  r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

Indefinite matrix.
A symmetric matrix with eigenvalues of both signs (+ and  ).

Independent vectors VI, .. " vk.
No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Length II x II.
Square root of x T x (Pythagoras in n dimensions).

Markov matrix M.
All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

Particular solution x p.
Any solution to Ax = b; often x p has free variables = o.

Random matrix rand(n) or randn(n).
MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Schur complement S, D  C A } B.
Appears in block elimination on [~ g ].

Schwarz inequality
Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

Sum V + W of subs paces.
Space of all (v in V) + (w in W). Direct sum: V n W = to}.