×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 12.3: Modeling Computation

Discrete Mathematics and Its Applications | 6th Edition | ISBN: 9780073229720 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 6th Edition

ISBN: 9780073229720

Discrete Mathematics and Its Applications | 6th Edition | ISBN: 9780073229720 | Authors: Kenneth Rosen

Solutions for Chapter 12.3: Modeling Computation

Solutions for Chapter 12.3
4 5 0 312 Reviews
21
1
Textbook: Discrete Mathematics and Its Applications
Edition: 6
Author: Kenneth Rosen
ISBN: 9780073229720

Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073229720. Since 62 problems in chapter 12.3: Modeling Computation have been answered, more than 33834 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 12.3: Modeling Computation includes 62 full step-by-step solutions. This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 6.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password